Это старая версия v2021b2/кружочек за 03.12.2017 13:59:02.

кружочек

это материалы по кружочку, который проходит по средам с 14:55 до 16:35.


6 декабря 2017

я попробую рассказать про стабильные особенности гладких отображений из поверхности в поверхность; это заведомо адово и не до конца понятно, поэтому тема продлится в течение лишь одного занятия — не пропустите.

29 ноября 2017

мы нарисовали пучок коник \(a(x^2-1)+b(y^2-1)=0\) (где \( (a,b)\) — любые пары вещественных чисел, отличные от \( (0,0)\)). получилось довольно красиво, но очень страшно, гиперболы там полезли, эллипсы..

22 ноября 2017

мы начали говорить про алгебраические уравнения от двух переменных и про кривые на плоскости, которые ими задаются. в частности, удалось доказать равносильность двух определений эллипса — как множества точек, сумма расстояний от которых до двух фокусов постоянна, и как окружности, растянутой по одному из направлений.
ещё поговорили про приводимые кривые и выяснили, как нарисовать кривую \(F(x,y)G(x,y)=0\), зная кривые \(F(x,y)=0\) и \(G(x,y)=0\).
домашнее задание
1. попробуйте доказать, что отрезки, соединяющие точку на эллипсе с двумя фокусами, образуют равные углы с касательной в этой точке.
2. даны окружности, заданные уравнениями \(x^2+y^2-9=0\) и \((x+1)^2+(y+2)^2-4=0\). попробуйте найти уравнение прямой, проходящей через их точки пересечения, не находя эти самые точки.

15 ноября 2017

мы попробуем определить эйлерову характеристику, доказать её инвариантность при гомеоморфизмах и вывести из этого, что поверхности разного рода не гомеоморфны.

8 ноября 2017

сегодня мы (частично) разобрали домашнее задание на каникулы, попутно обнаружив доселе не открытый пятый способ разбить стороны шестиугольника на пары (и дающий после склеивания сферу). в ходе разбора мы уверились, что никакого разумного способа перечислить такие разбиения нет, но каков род полученной после склеивания поверхности понять не особенно сложно.

25 октября 2017

мы продолжили резать ориентируемые поверхности по разным наборам кривых. а именно, мы доразобрались с тором и порезали поверхность рода 2.
затем мы занимались обратной процедурой: склеиванием сторон 2n-угольника (без перекрутки) в каком-либо порядке.
упражнение на каникулы.
а) Сколькими способами можно разбить на пары стороны правильного восьмиугольника?
б) Поверхность какого рода получается при склеивании парных сторон для каждого из способов?
у квадрата таких способов два (получаются сфера и тор), а у шестиугольника — четыре (получается сфера и три тора). что же получается для восьмиугольника мы узнаем за каникулы, либо после, а затем, возможно, наконец обсудим более сложные вопросы, например почему сфера и тор не гомеоморфны.

18 октября 2017

мы поговорили про ориентируемые поверхности и обсудили, что будет если разрезать тор по меридиану, параллели, по параллели и по меридиану, да и вообще по любой кривой, а затем принялись делать то же с поверхностью произвольного рода g.

4 октября 2017

мы определили действия групп, орбиты действия и стабилизаторы точек. примеров действия групп у нас пока не очень много, все они происходят из комбинаторных задач про раскраски. в конце была сформулирована формула Бёрнсайда, мы наметили путь её (возможного) доказательства через подсчёт двумя способами, а также попробовали применить для доказательства малой теоремы Ферма.
дома желающим предлагается изучить количество расстановок \(p\) ладей на торе \(p\times p\) и доказать с помощью него теорему Вильсона: \((p-1)!-1\) делится на \(p\).

27 сентября 2017

мы рассмотрели группы перестановок, состоящие из всех преобразований фиксированного конечного множества, затем мы обобщили понятие группы преобразований и посмотрели на примерах, какими они бывают.

20 сентября 2017

мы поговорили про отображения между множествами и посмотрели на композиции отображений. выяснилось, что композиция отображений \(A \to A\) ассоциативна, но не коммутативна, что для них существует нейтральный элемент, а обратные — только для некоторых. совокупность обратимых отображений называется группой (всех) преобразований A. изучением этого объекта мы и рассчитываем заняться в следующий раз.