Это старая версия Информатика/Архив/2017/11Б1/matplotlib за 02.01.2017 18:23:36.

matplotlib

Основным материалом по matplotlib будет следующий ресурс: http://nbviewer.jupyter.org/gi[..]_python/tree/master/


Задача 1

Глобальная задача: увидеть, что в питоне для умножения больших чисел используется алгоритм Карацубы, а также получить практически его асимптотику.
Должен получиться график в духе такого:


py vs gmp 2


В данной задаче нужно:

  1. Научиться генерить случайные целые числа длиной k бит;
  2. Научиться измерять время нескольких операций, используя таймер time.process_time();
  3. Отобрать набор битовых длин для изучения времени: геометрическую прогрессию с началом в 30 и окончанием в 300000 бит длиной 150-300 челов;
  4. Вычислить среднее время умножения нескольких пар чисел;
  5. Построить график времени в log-log шкале (пусть битовые длины k[i], а времёна t[i], нужно построить зависимость log(t[i]) от log(k[i]);
  6. Найти такую прямую l(x) = ax+b, что сумма квадратов разностей (log(t[i]) – l(log(k[i]))) для битовых длин k[i] > 2000 минимальна;
  7. Построить график этой прямой в log-log шкале, а также вычислить параметры в обычной шкале (log(y) = a log(x) + b => y = e^(b)*x^(a))
  8. Подписать эту прямую на графике

Задача 2

Ирисы Фишера


В данной задаче нужно:

  1. Прочитать про датасет по ссылке выше в википедии;
  2. Научиться загружать эти данные и изучить их;
  3. Построить графики как в примере ниже;
  4. Научиться решать следующую задачу: даны два множества точек на плоскости таких, что они разделимы прямой, то есть существует прямая такая, что все точки одного множества лежать по одну сторону от прямой, а точки второго
    по другую. Необходимо найти хотя бы одну такую прямую;
  5. Улучшение 4: нужно найти такую прямую, что минимальное расстояние до любой из точек максимально.
  6. (Подсказка к п. 5: оказывается такая прямая всегда является либо серединным перпендикуляром к отрезку, соединяющему точки разных классов, либо параллельна прямой, проходящей через две точки одного класса (докажите это). Поэтому нужную прямую можно найти за квадратичное время.
  7. Для простоты будем классифицировать только ирисы видов setosa и virginica, поэтому удалите из выборки по versicolor. Выберите пару параметров, лучше всех разделяющих разные классы Ирисов. Для классификации нужно построить разделяющую прямую в плоскости этих двух параметров.
  8. После того, как всё это получилось, займёмся валидацией и причёсыванием кода. Для начала создадим класс нашего классификатора со следующей структурой (см. код класса ниже).


from sklearn import datasets
# После этой команды будет загружен словарь (выполнить один раз)
iris = datasets.load_iris()

# Сохраняем данные на компьютер (выполнить один раз)
# data, target, feature_names, target_names = iris['data'], iris['target'], iris['feature_names'], iris['target_names']
# with open(r'M:\np_basic\iris.dump', 'wb') as f:
# pickle.dump((data, target, feature_names, target_names), f)

# Загрузка данных из сохранённого дампа
with open(r'M:\np_basic\iris.dump', 'rb') as f:

(data, target, feature_names, target_names) = pickle.load(f)


import numpy as np

class SimpleSplitLineClassifier():

_estimator_type = "classifier"

def init(self): # У нашего классификатора пока нет параметров
pass

def fit(self, X, y): # Команда для обучения классификатора
# Делаем проверки
if len(X.shape) != 2:
raise ValueError("Массив X должен быть двумерным")

if len(y.shape) != 1:

raise ValueError("Массив y должен быть одномерным")

self.classes_ = sorted(set(y)) # Упорядочиваем классы для ответов
if len(self.classes_) != 2:

raise ValueError("Массив y должен состоять ровно из двух различных значений")

if X.shape[0] != y.shape[0]:

raise ValueError("В массиве X должно быть столько строк, сколько в массиве y элементов")
# Сохраняем данные, на которых мы обучались в своих атрибутах
self.X_ = X
self.y_ = y
# Находим разделяющую прямую ax+by+c=0.
# Для классификации мы будем подставлять точку (x,y) в уравнение этой прямой,
# если полученное значение больше или равно нулю, то классифицируем в self.classes_[0], иначе – в self.classes_[1]
self.a, self.b, self.c = 0, 0, 0 # Вы ведь уже научились находить эту прямую?
return self

def predict(self, X):
# Проверяем, что форма массива X для предсказания правильная
if len(X.shape) != 2:
raise ValueError("Массив X должен быть двумерным")

if X.shape[1] != self.X_.shape[1]:

raise ValueError("В массиве X должно быть столько же столбцов, сколько в массиве, на котором производилось обучение")
# Классифицируем
predictions = np.zeros(len(X)) # Вы ведь уже научились определять ирисы?
return predictions

# Две вспомогательные функции на будущее
def get_params(self, deep=True): # Получить текущие параметры классификатора (у нас их нет)
return dict()

def set_params(self, **parameters): # Установить параметры классификатора
for parameter, value in parameters.items():
self.setattr(parameter, value)
return self



# Создаём классификатор
clf = SimpleSplitLineClassifier()
# Обучаем его
clf.fit(np.array(0], [1, 1], [-1, 0], [-1, 1), np.array([0, 0, 1, 1]))
# Предсказываем
print(clf.predict(np.array(0], [2, 0)))


Задача 3

Титаник


Данные:
file:/titanic_train.csv


import numpy as np
import pandas as pd
titanic_df = pd.read_csv("titanic_train.csv")
# Вектор ответов
y_train = titanic_df['Survived'].as_matrix()
# Удаляем ненужные столбцы
titanic_df.drop(['PassengerId','Name','Ticket','Survived'], axis=1, inplace=True)
# Данные
columns = titanic_df.columns
x_train = titanic_df.as_matrix()


Описание столбцов:


  • PassengerId — идентификатор пассажира
  • Survival — поле в котором указано спасся человек (1) или нет (0)
  • Pclass — содержит социально-экономический статус:
    • высокий
    • средний
    • низкий
  • Name — имя пассажира
  • Sex — пол пассажира
  • Age — возраст
  • SibSp — содержит информацию о количестве родственников 2-го порядка (муж, жена, братья, сетры)
  • Parch — содержит информацию о количестве родственников на борту 1-го порядка (мать, отец, дети)
  • Ticket — номер билета
  • Fare — цена билета
  • Cabin — каюта
  • Embarked — порт посадки
    • C — Cherbourg
    • Q — Queenstown
    • S — Southampton




Для kaggle:
file:/titanic_test.csv


test_df = pd.read_csv("train.csv")
# Сохраняем ID пассажиров
PassengerIds = test_df['PassengerId'].as_matrix()
# Удаляем ненужные столбцы
test_df.drop(['PassengerId','Name','Ticket','Survived'], axis=1, inplace=True)
# Делаем предсказание
y_pred = np.zeros_like(PassengerIds)
# Генерим ответ
submission = pd.DataFrame({"PassengerId": PassengerIds, "Survived": y_pred})
submission.to_csv('titanic_submission.csv', index=False)